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Noiseless limit of a ferro�uid rathetVolker Beker a, Andreas Engel a

aInstitut für Physik, Carl-von-Ossietzky-Universtität, 26111 Oldenburg, GermanyAbstratThe noiseless limit of a thermal rathet devie using ferro�uids is studied in detail.Contrary to previous laims it is proved that no direted transport an our in thismodel in the absene of �utuations.Key words: thermal rathet, ferro�uids, noiseless limitPACS: 05.40.-a, 82.70.-y, 75.50.Mm
1 IntrodutionReti�ation of non-equilibrium �utuations an be aomplished with thehelp of so-alled rathets [1℄. In these devies a periodi potential, i.e. fore�eld with zero spatial average, and undireted random noise onspire to pro-due direted transport. Besides their fundamental importane for statistialmehanis [2℄ rathets have gained renewed interest under the name of �Brown-ian motors� due to their possible relevane for transport in biologial ells andpotential appliations in the �eld of nano-tehnology [3℄. For a omprehensivereview of the �eld see [4℄.Reently a thermal rathet system using ferro�uids was introdued [5,6℄. Fer-ro�uids are olloidal suspensions of ferromagneti grains in a suitable arrierliquid [7℄. The spatial orientation of the ferromagneti partiles is in�uenedby the loal vortiity of the �ow �eld of the arrier liquid as well as by thermal�utuations due to random ollisions with the moleules of the liquid [8℄. More-over this orientation an be oupled via the magneti moment of the grainsto external magneti �elds. Choosing a suitable time dependene of this �eldto drive the system away from equilibrium it is possible to retify the orienta-tional �utuations of the ferromagneti partiles. More preisely an externalEmail addresses: beker�theorie.physik.uni-oldenburg.de (Volker Beker),engel�theorie.physik.uni-oldenburg.de (Andreas Engel).Preprint submitted to Physia A 2 November 2004



magneti �eld without net rotating omponent an be used to set up noise-indued rotations of the ferromagneti grains. Besides other advantages thissystem has the attrative feature that by the visous oupling of the partilesto the surrounding liquid the angular momentum of the many nanosopi mo-tors is transferred to the arrier liquid and shows up as a marosopi torquedensity whih an be easily deteted in experiments [5℄.The neessity of thermal �utuations for the operation of the rathet of thedesribed type in ferro�uids was disputed in [9℄. In fat there are severalexamples, e.g. so-alled roking rathets (see [4℄), in whih for appropriatehoies of parameters direted transport may even our without �utuations.However, in order to spin up ferro�uid partiles by a magneti �eld without netrotating omponent as introdued in [5℄ the presene of thermal �utuations isindeed indispensable. This is shown in the present paper where we prove thatin the deterministi dynamis no full rotations of the partiles may our andthat no torque may be transferred from the magneti �eld to the partiles.To this end we �rst reall in setion II the basi equations for a single ferro-magneti partile in an osillating external �eld as derived in [5℄. The rathete�et was shown to our in strongly diluted ferro�uids also suh that dipole-dipole interations between the ferromagneti grains may safely be negletedand a single-partile piture is appropriate for the theoretial analysis. Settingthe noise intensity equal to zero we investigate in setions III and IV the de-tails of the deterministi dynamis of the partile and show that only solutionswithout full rotation of the partile are possible. Finally, setion V ontainsthe main onlusion.2 Basi equationsWe onsider a spherial partile of volume V and magneti moment m, subjetto a time dependent magneti �eld of the form
H = (Hx, Hy(t), 0)) (1)where Hy(t) is a periodi funtion with period 2π/ω. As instrutive example[5℄ we will onsider the speial ase

Hy(t) = α cos(ωt) + β sin(2ωt + δ) (2)where α, β and the phase shift δ are ontrol parameters. The partile is im-mersed in a �uid of visosity η.To desribe the orientation of the partile we use the unit vetor e = m/mwhere m denotes the the magneti moment of the partile and m its modulus.2



Changes of e are desribed by the equation
de

dt
= Ω × e, (3)where Ω is the angular veloity of the partile.Furthermore we onsider an overdamped stohasti dynamis in whih themagneti torque

Nmag = me × H (4)and the stohasti torque [11℄, whih results from the interation between thepartile and the surrounding liquid,
Nstoch =

√
2D ξ(t) (5)is ounterbalaned by the visous torque [10℄:

Nvis = −6ηV Ω (6)In equation (5), ξ(t) is a vetor of Gaussian white noise with zero mean andunit variane. The noise intensity D is related to the temperature T of the liq-uid by the Einstein relation: D = 6ηV kBT , where kB stands for the Boltzmannonstant. From (4), (5) and (6) we �nd:
6ηV Ω = me × H +

√
2D ξ(t). (7)This relation together with equation (3) yields a losed equation for the timeevolution of e of the form

de

dt
=

m

6ηV
(e ×H) × e +

√
2D

6ηV
ξ × e. (8)Introduing dimensionless units we measure time in units of the inverse driv-ing frequeny, t → t/ω, and use 6ηV ω/m as unit for the magneti �eldstrength H → (6ηV ω/m)H. The noise intensity D is saled aording to

D → (6ηV )2 D. Eq. (8) then redues to
de

dt
= (e × H) × e +

√
2D ξ × e. (9)It is onvenient to parametrize the orientation of the partile by the two angles

θ and φ aording to
e = (sin θ cos φ, sin θ sin φ, cos θ) (10)The Langevin equations for the time evolution of these angles are then of the3



form [11,12℄
dθ

dt
= − ∂

∂θ
U + D cot θ +

√
2D ξθ (11)

dφ

dt
= − 1

sin2 θ

∂

∂φ
U +

√
2D

sin θ
ξφ. (12)where we have introdued the potential,

U(θ, φ) = −e · H = − sin θ (Hx cos φ + Hy(t) sin φ) . (13)The observable of prinipal interest for the thermal rathet e�et in ferro�uidsis the average torque N arising at the magneti partile in the long time limit.Here the average is over time and hene inludes both the ensemble averageover di�erent realizations of the noise as well as the average over the timedependene of the external magneti �eld. The fous of the present paper ison the T → 0 limit implying D → 0. The other system parameters like the�uid visosity are assumed to stay onstant. We then �nd for the averagedtorque from the dimensionless forms of (4) and (6):
N = e × H = −Ω, (14)sine the stohasti torque is zero in the absene of �utuations.For later use it is instrutive also to study the ase in whih the partileorientation is on�ned to the plane de�ned by θ ≡ π/2. In this ase we have

N = (0, 0, Nz) and Ω = (0, 0, ∂φ/∂t). Therefore from eq. (14) we �nd
Nz = lim

(t2−t1)→∞

1

t2 − t1

∫ t2

t1

dt′
∂φ

∂t′
(t′) (15)and hene

Nz = lim
(t2−t1)→∞

φ(t2) − φ(t1)

t2 − t1
(16)In the absene of partile rotation, i.e. if 0 < φ < 2π, therefore no averagetorque may arise.In the following two setions we study the deterministi dynamis given by(9) with D = 0 in detail. We �rst onsider the ase Hx = 0 and then deal withthe more general situation where Hx 6= 0.4



3 The ase Hx = 0In this ase the external �eld has the form
H = (0, Hy(t), 0) (17)with a general time-dependent Hy(t). For D = 0 eq. (9) yields the followingequations for the omponents of e:

dex

dt
= −exHy(t)ey (18)

dey

dt
= −e2

yHy(t) + Hy(t) (19)
dez

dt
= −ezHy(t)ey . (20)(21)This system of di�erential equations is to be ompleted by appropriate initialonditions at some initial time t0. Without loss of generality we an hoosethe oordinate system in suh a way that ez(t0) = 0, i.e. we take the x-z-planeas the plane de�ned by e(t0) and the diretion of the magneti �eld. Fromequation (20) then follows that ez is identially zero, ez(t) ≡ 0.>From (18) and (19) we �nd

ey(t) = tanh
(∫ t

t0

dt′Hy(t
′) + artanh ey(t0)

) (22)and
ex(t) = ex(t0) exp

(

−
∫ t

t0

dt′Hy(t
′)ey(t

′)
) (23)The integral I in the exponential funtion in (23) an be determined using(22)

I =
∫ t

t0

dt′Hy(t
′) tanh

(

∫ t′

t0

dt′′Hy(t
′′) + artanh ey(t0)

)

. (24)Substituting u(t) =
∫ t
t0

dt′Hy(t
′) + artanh ey(t0) this gives

I =
∫ u(t)

u(t0)
du tanh(u) = ln

(

cosh (u(t))

cosh (u(t0))

) (25)and we �nally get the solution
ex(t) = ex(t0)

cosh
(artanhey(t0)

)

cosh
(artanh ey(t0) +

∫ t
t0

dt′Hy(t′)
) (26)

ey(t) = tanh
(∫ t

t0

dt′Hy(t
′) + artanh ey(t0)

)

. (27)5
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tFig. 1. Trajetories φ(t) for the ase Hx ≡ 0 and for the time dependene of
Hy(t) as de�ned in (2) and t0 = 0. The parameter values are hosen as α = 1,
β = 1, and δ = 0. The di�erent urves orrespond to di�erent initial onditions,
φ0 = π , 5π/6 , π/6 and 0 (from top to bottom). There are no rotary solutions in theabsene of �utuations and hene no average torque may arise. Note that the traje-tories are di�erent for di�erent initial onditions, there is hene no unique long-timebehaviour.>From (26) it follows that there are no full rotations of the partile, beausethe x-omponent of e annot hange sign. Expressed in terms of θ and φ,equations (26), (27) for this hoie of oordinates beome

θ(t) =
π

2
(28)

φ(t) = artansinh
(

∫ t
t0

dt′Hy(t
′)
)

+ cosh
(

∫ t
t0

dt′Hy(t
′)
)

sin φ0

cos φ0



 , (29)where φ0 = φ(t0) The domain of the artan funtion has to be hosen suhthat artan (tan(φ0)) = φ0. Some trajetories of φ(t), for the time dependene
Hy(t) as given in (2) and a ertain hoie of parameters are shown in �gure 1.Note that there is no unique long time behaviour for Hx = 0. The trajetoriesof φ(t) are di�erent for di�erent initial onditions.The main onlusion of this setion is the absene of full rotations of theferro�uid partile for Hx = 0. Hene φ is bounded to an interval φmin <
φ < φmax. Together with eq. (16) it follows that for Hx = 0 and any timedependene Hy(t) there is no average torque.6



4 The ase Hx > 0In the previous setion we have disussed the behavior of a ferromagnetipartile in a time-dependent �eld in y-diretion and we have shown that inthis ase no full rotations of the partile may our. Intuitively it is learthat an additional onstant �eld in x-diretion should not hange this result.Nevertheless the argument given in the previous setion aording to whihthe x-omponent of the orientation vetor e annot hange sign does no longerhold true. If, e.g., ex(t0) is negative and Hx is positive while Hy(t) = 0, theorientation of e will tend toward the diretion of H and therefore ex has tohange sign. It is therefore neessary to take a loser look on the possibleimpliations of a onstant magneti �eld in x-diretion for the motion of themagneti partile. We will show in this setion that even in the presene ofsuh a �eld θ will onverge to π/2 in the long time limit while φ will be on�nedto an interval φmin < φ < φmax.We start with eqs. (11) and (12) in the deterministi limit, D = 0. Usingeq. (13) they an be written in the form
dθ

dt
= cos θ

(

Hx cos φ + Hy(t) sin φ
) (30)

dφ

dt
=

1

sin θ
Hx

(

G(t) cos φ − sin φ
)

, (31)where we have introdued the funtion G(t) = Hy(t)/Hx.Let us �rst look at the sign of dφ/dt whih is given bysgn (dφ

dt

)

= sgn(cos φ) sgn(G(t) − tan φ). (32)Sine G(t) is a periodi funtion it has a maximum Gmax and a minimum
Gmin. Denote by φmax and φmin the solutions of the equation tanφ = Gmax and
tan φ = Gmin respetively in the interval (−π/2, π/2). Assuming φ to belongto the interval (−π/2, 3π/2) it is easy then to show that dφ/dt is always (i.e.for all t) positive if −π/2 < φ < φmin or φmax +π < φ < 3π/2 (region II), andthat it is always negative for φmax < φ < φmin +π (region I) (f. �g.2). For theremaining values of φ the sign of dφ/dt depends on the atual value of G(t).Note that at φ = ±π/2 both (G(t) − tanφ) and cos φ hange sign suh that
dφ/dt does not. Hene these �ritial� points orresponding to ex = 0 belongto regions in whih the sign of dφ/dt is independent of time.In order to disuss now the time evolution of θ and φ we have to onsiderdi�erent initial onditions for φ. Quite generally we may assume Hx > 0without loss of generality. Let us �rst onsider the ase −π/2 ≤ φ0 ≤ π/2,i.e. φ starts in regions I, II, or III. Then φ(t) has to reah region III sooner7
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Fig. 2. Left: Regions with di�erent values of dφ/dt as shown by the arrows. In regionI dφ/dt < 0 for all t, in region II dφ/dt > 0 for all t. In regions III and IV the signof dφ/dt depends on the atual value of G(t). Right: De�nition of φmax and φminand graphial determination of the sign of dφ/dt.or later and will not be able to leave it again (f. �g.2). Stritly speaking thisis orret only if φ(t) evolves ontinuously. But we have to take into aountalso that there is the possibility of disontinuous hanges of φ when θ reahesthe limiting values θ = 0 or θ = π. However, this annot happen either. Toprove this statement we introdue the quantity
h =

ez

ex

. (33)Using (9) with D = 0 its time derivative is given by
dh

dt
= −Hxez

e2
x

= −Hx

ex

h , (34)or expressed in terms of θ and φ

dh

dt
= − Hx

cos φ sin θ
h . (35)Hene

h(t) = h(t0) exp

(

−
∫ t

t0

dt′
Hx

cos φ(t′) sin θ(t′)

) (36)Aordingly, as long as φ stays in the interval (−π/2..π/2) the integral in theexponent of (36) grows and onsequently |h(t)| monotonially dereases withtime. Therefore θ annot reah 0 or π.Hene φ(t) annot leave region III neither by ontinuous nor by disontinuoushanges. On the one hand this ensures that φmin ≤ φ(t) ≤ φmax for all t onthe other hand it implies via (36) that h(t) → 0 for large t and hene that θonverges asymptotially to π/2. 8



If π/2 < φ0 < 3π/2 the evolution of φ starts in regions I, II, or IV. If at somelater time φ(t) is found in the interval (−π/2, π/2) we are bak to the previousase. If not and h(t0) 6= 0 eq. (36) implies that |h(t)| inreases monotoniallywith time and aordingly θ tends to either 0 or π. By symmetry both ases areequivalent so eah other so let us fous on θ → 0. Then h ∼ 1/θ and eq. (35)aquires the asymptoti form dh/dt = C h2 with some positive onstant C.Therefore there will be a �nite time singularity in the solution h(t) and weget θ(t1) = 0 for some �nite t1. Sine the magneti �eld has a positive x-omponent it is lear that for t > t1 we will have −π/2 ≤ φ(t) ≤ π/2 andhene we are again bak to the �rst ase.Summing up, exept for a set of measure zero, namely φmin+π < φ0 < φmax+πand θ = π/2, all initial onditions give rise to a long time dynamis with valuesof φ between φmin and φmax. In any ase also for Hx 6= 0 no full rotations ofthe partile are possible sine these would imply that φ(t) lies for some t inregion III whih it were unable to leave again. As in the ase Hx = 0 we then�nd from (16) that no average torque is transferred from the magneti �eldto the partile or its surrounding liquid.5 ConlusionBy a detailed analysis of the deterministi dynamis of a magneti dipole inan external magneti �eld with onstant x-omponent and time periodi y-omponent we have proved that no full rotations of the partile may our.This shows that for the thermal rathet e�et in ferro�uids reported in [5℄thermal �utuations are indispensable.Referenes[1℄ R. D. Astumian and P. Hänggi, Physis Today 55, 33 (2002)[2℄ S. L. Harvey and A. F. Rex (eds.), Maxwell's Demon: Entropy, Information,Computing (Adam Hilger, Bristol, 1990)[3℄ H. Linke (ed.) Speial issue on rathets and Brownian motors: Basi experimentsand appliations, Appl. Phys. A 75, 167-352 (2002)[4℄ P. Reimann, Phys. Rep. 361, 57 (2002)[5℄ A. Engel, H. W. Müller, R. Reimann, A. Jung, Phys. Rev. Lett. 91, 060602,2003[6℄ A. Engel, P. Reimann, Thermal rathet e�ets in ferro�uids, to be published inPhys. Rev. E., ond-mat/0405393 9
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